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3-D BOUNDARY-LAYER FLOWS 

1.0  CROSSFLOW INSTABILITY 

This section addresses the crossflow instability that causes the breakdown to turbulence in 3-D 
boundary layers that are characteristic of swept-wing flows. The papers of Reed & Saric (1989), 
Kohama et al. (1991), Kachanov (1996), Arnal (1997), Bippes (1997), Saric et al. (2003), Saric et 
al. (2004), Saric et al. (2008), Reed & Saric (2008), and Carpenter et al. (2009) provide an 
extensive list of references for recent experiments, including the DLR experiments in Germany 
on a swept flat plate, a Russian swept-flat-plate experiment, the CERT/ONERA experiments on 
swept wings, the Institute of Fluid Science work in Sendai on cones and spheres, the Arizona 
State University (ASU) swept-wing experiments, and the Texas A&M flight experiments. These 
papers established the existence of both travelling and stationary crossflow vortices, saturation of 
the stationary crossflow vortex, the nonlinear secondary instability leading to transition, and the 
sensitivity to freestream disturbances and surface roughness. Here are some great challenges to 
the computationalist. 

One of the key missing ingredients in all 3-D boundary-layer experiments is the understanding of 
receptivity. Receptivity has many different paths through which to introduce a disturbance into 
the boundary layer and this “road map” is more complicated because of the amplified stationary 
vortices. In fact, many aspects of transition in 3-D boundary layers are orthogonal to 2-D 
boundary layers so such a “road map” is either not unique or too complicated. Aside from the 
usual mechanisms, such as the interaction of freestream turbulence and acoustical disturbances 
with model vibrations, leading-edge curvature, attachment-line contamination, discontinuities in 
surface curvature, etc., the presence of roughness that may enhance a stationary streamwise 
vortex is very important. In contrast to 2-D boundary layers where small 2-D roughness is 
important and 3-D roughness is less important unless it is large, the 3-D boundary layer appears 
to be ultra sensitive to micron-sized 3-D roughness within a small neighborhood of the leading 
edge. In this case, 2-D roughness is only important at its edges. 

For swept wings, the crossflow instability occurs in the regions of strong pressure gradient, 
primarily near the attachment line. In the inviscid region outside the boundary layer, the 
combined influences of sweep and pressure gradient produce curved streamlines at the boundary-
layer edge. Inside the boundary layer, the streamwise velocity is reduced but the pressure gradient 
is unchanged. Thus, the balance between centripetal acceleration and pressure gradient does not 
exist. This imbalance results in a secondary flow in the boundary layer called crossflow that is 
perpendicular to the direction of the local inviscid streamline. Because the crossflow velocity 
must vanish at the wall and at the boundary-layer edge, an inflection point exists and provides a 
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source of an inviscid instability mechanism.  The 3-D profile and resolved streamwise and 
crossflow boundary-layer profiles are shown in Figure 1. 

 

 

Figure 1.  Flow over a swept wing and the resolved local streamwise and crossflow 
boundary-layer profiles.  Note the inflection point in the crossflow profile. 

 

 

Figure 2.  Flow over a swept wing in a quiet wind tunnel showing the stationary pattern 
of the crossflow instability characteristic of flight (Radeztsky et al., 1993). 

 

1.1 Linear Stability Theory 
Linear stability theory alone is not so successful for 3-D boundary layers. Arnal (2009) reviews 

the different approaches to the application of the 
Ne  method. When applied to available flight 

and wind-tunnel experiments, there is large scatter in the values of the N  factor at the onset of 
transition among the different methods. There are three reasons for this behavior: 1) Transition 
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location is more difficult to determine accurately in 3-D flow than in 2-D flow. 2) Crossflow 
disturbances are ultra sensitive to micron-sized roughness elements which have no effect on 
streamwise disturbances (Radeztsky et al., 1993). 3) Disturbance development can be dominated 
by nonlinearities during a large part of the transition process and the use of linear theory up to 
breakdown is inappropriate and can overestimate wave amplitude (Reibert et al., 1996; Haynes & 
Reed, 2000). 

Unlike T-S instabilities, the crossflow problem exhibits stationary as well as traveling 
disturbances that are amplified. Even though both types of waves are present in typical swept-
wing or rotating-disk flows, transition is usually caused by either the stationary or the traveling 
waves. Although linear theory predicts that the traveling disturbances have higher growth rates, 
transition in many experiments is induced by stationary waves. Whether stationary or traveling 
waves dominate is related to the receptivity process. Stationary waves are more important in low-
turbulence environments characteristic of flight, while traveling waves dominate in high-
turbulence environments (Bippes 1997; Deyhle & Bippes 1996).  In the flight environment, the 
presence of micron-sized 3-D roughness at the leading edge (e.g. from a painted surface) 
establishes the stationary streamwise vortex.  In fact, the 3-D boundary layer is ultra sensitive to 
this roughness, yet this roughness has no effect on streamwise disturbances (Radeztsky et al., 
1993).  In interacting with inherent surface roughness, freestream turbulence appears to be the 
source of travelling crossflow, but freestream turbulence is not a dominant feature of flight 
conditions (White & Saric 2005). Therefore, in flight, the instability appears as stationary co-
rotating vortices whose axes are aligned to within a few degrees of the local inviscid streamlines.  
The wavelength of these vortices is approximately four times the local boundary-layer thickness. 
See Figure 2.  

 
 

Figure 3.  Typical linear stability theory results for crossflow show that traveling 
disturbances have higher growth rates (Mack 1984). 
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One of the important results to come out of the DLR group is the set of data that show early 
saturation of the disturbance amplitude and the failure of linear theory to predict the growth of the 
instability. They also report distorted mean profiles similar to those of Kohama et al. (1991) and 
Malik et al. (1994) due to the presence of the stationary corotating vortices. A similarity between 
the DLR and ASU experiments is the high N -factors and high amplitude of the mean-flow 
distortion (10%-20%). It is not surprising that linear theory fails. 

For low-amplitude crossflow waves, Radeztsky et al. (1994) find that linear stability theory 
correctly predicts the expected wavelengths and mode shapes for stationary crossflow, but not the 
growth rates. For this case, Haynes and Reed (2000) find that LPSE including curvature correctly 
predicts the wavelengths, mode shapes, and growth rates. As discussed in the following Section, 
this is not the case for higher-amplitude crossflow and the results of Reibert et al. (1996) and 
Haynes & Reed (2000) demonstrate conclusively that a nonlinear calculation is required to obtain 
complete agreement. This is shown in the next section. 

1.2 Parabolized Stability Equations 
The NPSE approach has recently been validated for 3-D flows subjected to crossflow 
disturbances by Haynes & Reed (2000). Here a detailed comparison of NPSE results with the 
experimental measurements of Reibert et al. (1996) show remarkably good agreement. The 
configuration is an NLF(2)-0415 45°-swept airfoil at -4° angle-of-attack, so chosen to provide an 
extensive region of crossflow (at least back to mid-chord) for detailed study of the physics. A 
spanwise array of roughness elements is used near the airfoil leading edge (at 2% chord) to 
introduce spanwise-periodic crossflow disturbances into the boundary layer. According to LST, a 
spanwise spacing of 12 mm corresponds to the most highly amplified stationary crossflow 
disturbance. The walls of the ASU Unsteady Wind Tunnel were shaped to achieve a spanwise-
independent basic-state flow – an “infinite wing” in CFD terms. The freestream turbulence are 

well documented to be ( )410O −
 so that, with any surface roughness, stationary crossflow is 

expected. Reibert et al. (1996) provide all the details for the experimental facility and set-up. 

Haynes and Reed (2000) used a panel-method code to compute the inviscid flow, from which the 
edge boundary conditions were generated for the boundary-layer code. Agreement between the 

experimental and computational 
Cp  distribution is good. 

As a baseline case to study the evolution of crossflow vortices, roughness elements with a 
spanwise spacing of 12 mm were placed on the experimental model. The initial conditions for the 
NPSE calculation (with curvature) were obtained by solving the local LST equations at 5% chord 
location for the fundamental [mode (0,1)] and adjusting its RMS amplitude such that the total 
disturbance amplitude matched that of the experiment at 10% chord. The NPSE was then 
marched from 5% to 45% chord. Transition occurred on the experimental model at 52% chord. 

The primary and higher modes all grow rapidly at first and saturate at about 30% chord. This is 
due to a strong nonlinear interaction among all the modes over a large chordwise distance. From 
about 35% chord on, there is still strong nonlinear interaction among the primary and second 
harmonic, but not the others. The development of crossflow occurs in two stages. The first stage 
is linear and is characterized by small vertical v  and spanwise w  disturbance velocities 
convecting low-momentum fluid away from the wall and high-momentum fluid toward the wall. 
This exchange of momentum occurs in a region very close to the wall where there are large 
vertical gradients in the basic-state streamwise velocity. Because of this large gradient, the small 
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displacements caused by the v  and w  disturbance components quickly lead to large disturbances 
u  superposed on the basic state further downstream. This u  component soon becomes too large 
and nonlinear interactions must be included in any calculations. This is the second stage, 
evidenced by roll-over seen in the streamwise-velocity contours. Figure 4 shows a comparison of 
the experimental and computational total streamwise velocity contours at 45% chord; the 
agreement between the NPSE and the experiments is excellent. Figure 5 shows the comparison of 
the experimental N -factor curves with LPSE (with curvature), NPSE (with curvature), and LST 
(with curvature). It is clear that the linear theories fail to accurately describe the transitional flow 
for this situation. 
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Figure 4. Streamwise-velocity contours for a swept wing showing the nonlinear 
distortion due to the stationary crossflow vortex pattern typical of flight.  Example of 
successful validation:  Top figure – experiments of Reibert et al. 1996; lower figure – 

computations of Haynes & Reed (2000). 

 

Figure 5. N-factor comparisons. NPSE agrees with experiments.  LST (with curvature) 
underpredicts initial growth and overpredicts growth after nonlinear effects set in.  

LPSE (with curvature and nonparallel) successfully predicts intial growth but is quickly 
in error after nonlinear effects set in.  Experiments: Reibert et al. 1996; computations: 

Haynes & Reed 2000. 
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There has been much debate about the effects of curvature. For this configuration , the inclusion 

of curvature has a very small effect on the metric coefficients. The maximum values of 1k  and 2k
 

occur at 5% chord where they are the order of 01.1  and 
310−

, respectively. They both drop off 
sharply with increasing chordwise distance. These values may compel the researcher to neglect 
curvature, but the work of Haynes and Reed (2000) demonstrates conclusively that small changes 
in the metric coefficients can have a significant effect on the development of crossflow vortices.  
Radeztsky et al. (1994) studied the effects of angle-of-attack (AOA). Here, in a case of weak 
favorable pressure gradient, the experiments showed that the crossflow disturbance is decaying in 
disagreement with various linear theories (LST, LPSE/without curvature, and LST/with 
curvature) that predicted the disturbance to be growing. Radeztsky et al. (1994) concluded that 
the disagreement was due to nonlinearity. For this case, Haynes and Reed (2000) demonstrated 
that the LPSE/with curvature and NPSE/with curvature both agreed with the experiment, 
indicating that in fact the crossflow disturbance decays and there is a strong sensitivity to changes 
in curvature, nonparallel effects, and pressure gradient (AOA). The disturbance was linear for this 
case. 

Saric et al. (1998) observed that unstable waves occur only at integer multiples of the primary 
disturbance and no subharmonic disturbances are destabilized. They investigated the effects of 
distributed roughness whose primary disturbance wavenumber does not contain a harmonic at 12 
mm (the most unstable wavelength according to linear theory). In the absence of artificial 
roughness, transition occurs at 71% chord. Adding roughness with a spanwise spacing equal to 
the wavelength of the linearly most unstable wave moves transition forward to 52% chord. 
However, subcritical forcing at 8 mm spanwise spacing actually delays transition beyond the 
pressure minimum and onto the trailing-edge flap at 80% chord. The NPSE results confirmed this 
effect. 

1.3 Control with Distributed Roughness  
Two important observations concerning the distributed roughness results of Reibert et al (1996) 
are: (1) unstable waves occur only at integer multiples of the primary disturbance wavenumber; 
(2) no subharmonic disturbances are destabilized. Spacing the roughness elements with 
wavenumber 2 /k π λ=  apart, excites harmonic disturbances with spanwise wavenumbers of 2k, 
3k, , nk (corresponding to / 2, / 3, , / nλ λ λ ) but does not produce any unstable waves with 
“intermediate” wavelengths or with wavelengths greater than λ . 

Following this lead, Saric et al (1998) investigate the effects of distributed roughness whose 
primary disturbance wavenumber does not contain a harmonic at sλ  = 12 mm (the most unstable 
wavelength according to linear theory). By changing the fundamental disturbance wavelength 
(i.e., the roughness spacing) to 18 mm, the velocity contours clearly showed the presence of the 

18 mm, 9 mm, and 6 mm wavelengths. However, the linearly most unstable disturbance ( sλ =12 
mm) has been completely suppressed. Moreover (and consistent with all previous results), no 
subharmonic disturbances are observed. This shows that an appropriately designed roughness 
configuration can, in fact, inhibit the growth of the (naturally occurring) most-unstable 
disturbance. When the disturbance wavelength was forced at 8 mm, the growth of all disturbances 
of greater wavelength was suppressed. The most remarkable result obtained from the subcritical 
roughness spacing is the dramatic affect on transition location: In the absence of artificial 
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roughness, transition occurs at 71% chord. Adding roughness with a spanwise spacing equal to 
the wavelength of the linearly most unstable wave moves transition forward to 47% chord. 
However, subcritical forcing at 8 mm spanwise spacing actually delays transition beyond the 
pressure minimum and well beyond 80% chord (the actual location was beyond view). This 
promising technique has currently been demonstrated in flight on the O-2A at Texas A&M at 
chord Reynolds numbers of 7.5 million and on the NASA Dryden F-15B at supersonic speeds. 
(Saric et al. 2004; Saric et al. 2008; Rhodes et al. 2008). 

Subsequent to the experiments, the NPSE results (Haynes & Reed 2000) confirmed this effect. In 
a DNS solution, Wassermann & Kloker (2002) have shown the same stabilization due to 
subcritical forcing. Using the same independent approach regarding the calculation of the basic 
state, they demonstrated the stabilization due to subcritical roughness and coined the name 
transition delay by “upstream flow deformation.” 

1.4 Secondary Instabilities  
Once stationary vortices reach saturation amplitude, this state can persist for a very significant 
streamwise distance. The velocity contours show low-momentum fluid above high-momentum 
fluid which produces a double inflection point in the wall-normal velocity profile. There is also 
an inflection point in the spanwise profile. These inflection points are high in the boundary layer 
and the saturated vortices become unstable to a high-frequency secondary instability that 
ultimately brings about transition to turbulence. Because of the importance of the secondary 
instabilities in determining the location of breakdown of the laminar flow, there have been a 
number of investigations, both experimental and computational, in this area. Bippes (1999) 
includes details on the German efforts, in particular, the work by Lerche (1996) that emphasizes 
secondary instabilities in flows with higher turbulence levels and traveling crossflow waves. 
Recent efforts involving secondary instabilities in the Russian traveling wave experiments are 
covered by Boiko et al (1995, 1999). 

The first crossflow experiment for which a high-frequency disturbance was observed prior to 
transition was by Poll (1985). Traveling crossflow waves were observed with a dominant 
frequency of 1.1 kHz for Rec = 0.9×106. Increasing the chord Reynolds number to 1.2×106 
increased the traveling crossflow frequency to 1.5 kHz and also included an intermittent signal at 
17.5 kHz superposed on the underlying traveling crossflow waves. Poll noted that increasing the 
Reynolds number beyond 1.2×106 resulted in turbulent flow at the measurement location, so the 
high-frequency signal appeared only in a narrow range just prior to transition. Poll attributed the 
existence of the high-frequency component to intermittent turbulence. 

A high-frequency secondary instability was specifically investigated as a source of breakdown by 
Kohama et al (1991). This experiment combined hotwire measurements and flow visualizations 
and was intended to determine the location and behavior of the secondary instability mode 
relative to visualized breakdown patterns. It is clear from the Kohama et al (1991) experiments 
that there is a growing high-frequency mode in the region upstream of transition that can be 
associated with an inviscid instability of the distorted mean flow. However, a concern can be 
raised because the measurements were made without a well-controlled primary disturbance state. 
Experiments subsequent to this work used arrays of micron-sized roughness elements near the 
leading edge that established the spanwise uniformity both of the stationary vortex amplitudes 
and the transition location. Without the benefit of this technique, the data obtained by Kohama et 
al (1991) likely spanned a wide range of stability behavior despite having been obtained at a 
single chord position. Improvements in experimental techniques mean that more recent secondary 
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instability experiments have replaced the work by Kohama et al (1991) as the best source for 
secondary instability data. 

Kohama et al (1996) provide somewhat more detail than Kohama et al (1991) by including 
velocity fluctuation maps that are filtered to give either primary instability or secondary 
instability fluctuation levels. Kohama et al (1996) conclude that a “turbulent wedge starts from 
the middle height of the boundary layer” and that this behavior is different from the usual picture 
of a turbulent wedge that originates in the high-shear regions in naphthalene flow-visualization 
experiments. A subsequent swept plate experiment by Kawakami et al (1999) was conducted to 
further refine these measurements. Kawakami et al’s experiment featured a small speaker 
mounted flush with the surface that permitted tracking of particular secondary-instability 
frequencies. Without acoustic forcing, two separate high-frequency bands of disturbances were 
observed to be unstable. At a chord Reynolds number of 4.9 × 106, a band located between 600 
Hz and 2.5 kHz destabilized just downstream of x/c = 0.35 and a second band located 
between 2.5 and 4.0 kHz destabilized just upstream of x/c = 0.50. Transition was observed around 
x/c = 0.70. With acoustic forcing applied, the secondary instability frequency with the largest 
growth between x/c = 0.40 and x/c = 0.475 was observed to be 1.5 kHz. 

In an effort to provide a more concrete experimental database on the behavior of the secondary 
instability, White & Saric (2005) conduct a very detailed experiment that tracks the development 
of secondary instabilities on a swept wing throughout their development for various Reynolds 
numbers and roughness configurations. They found a number of unique secondary instability 
modes that can occur at different frequency bands and at different locations within the stationary 
vortex structure. In White & Saric’s experiment as many as six distinct modes are observed 
between 2 and 20 kHz. The lowest-frequency mode is nearly always the highest amplitude of all 
the secondary instabilities and is always associated with an extremum in the spanwise gradient, 
∂U/∂z which Malik et al (1996, 1999) refer to as a mode-I or z mode. Higher frequency modes 
include both harmonics of the lowest-frequency z mode that appear at the same location within 
the vortex and also distinct mode-II or y modes that form in the ∂U/∂y shear layer in the portion 
of the vortex farthest from the wall. The lowest frequency mode is typically detected upstream of 
any of the higher frequency modes. However, many higher frequency modes appear within a very 
short distance downstream. All of the secondary instability modes are amplified at a much greater 
rate than the primary stationary vortices (even prior to their saturation). The rapid growth leads 
very quickly to the breakdown of laminar flow, within about 5% chord of where the secondary 
instability is first detected. A consequence of this for transition-prediction methodologies is that 
adequate engineering predictions of transition location could be obtained from simply identifying 
where the secondary instabilities are destabilized because they lead to turbulence in such a short 
distance downstream of their destabilization location. An interesting feature of the breakdown of 
the stationary vortex structure is that it is highly localized. Spectra obtained by White & Saric at 
various points within the structure indicate that the first point to feature a broad, flat velocity-
fluctuation spectrum characteristic of turbulence is a point very close to the wall in the region of 
highest wall shear. Other points in the structure remain essentially laminar for some distance 
downstream of the initial breakdown location. This finding supports the notion of a turbulent 
wedge originating near the wall, not what was concluded by Kohama et al (1996). 

A successful computational approach to the secondary instability was presented by Malik et al 
(1994) who used a NPSE code to calculate the primary instability behavior of stationary 
disturbances of a swept Hiemenz flow. As described previously, the NPSE approach successfully 
captures the nonlinear effects including amplitude saturation. The distorted meanflow provides a 
basic state for a local, temporal secondary instability calculation. The most unstable frequency is 
approximately one order of magnitude greater than the most unstable primary traveling wave 
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similar to Kohama et al (1991) and the peak mode amplitude is “on top” of the stationary 
crossflow vortex structure. This location corresponds to what will be referred to below by Malik 
et al (1996) as the mode-II secondary instability. 

In order to obtain a more direct comparison to experimental data, Malik et al (1996) used 
parameters designed to match the conditions found for the swept-cylinder experiment of Poll 
(1985) and the swept-wing experiment of Kohama et al (1991). The calculations of Malik et al 
(1996) reveal that the energy production for a mode-I instability is dominated by the term 
<u2w2>∂U2/∂z2 and the mode-II instability is dominated by <u2v2>∂U2/∂y2 where the subscript 
“2” refers to a primary-vortex-oriented coordinate system. This energy-production behavior 
suggests that the mode-I instability is generated primarily by inflection points in the spanwise 
direction and the mode-II instability is generated by inflection points in the wall-normal direction. 
This situation is analogous to the secondary instabilities of Görtler vortices (Saric 1994). Malik et 
al (1996) claim that the fluctuations observed by Kohama et al (1991) are mode-II instabilities but 
the spectral data presented by Kohama et al (1991) likely includes contributions of both the type-I 
and type-II modes. Although one or the other production mechanism may dominate for a 
particular mode, it is too simplistic to assume that only the spanwise or wall-normal inflection 
points are responsible for the appearance of a particular mode; with such a highly distorted 3-D 
boundary layer, all possible instabilities must be evaluated. 

Malik et al (1996) also compute the secondary instability behavior observed by Poll (1985) and 
predict a 17.2-kHz mode compared to Poll's high-frequency signal occurred at 17.5 kHz. Based 
on the shape of this disturbance, Malik et al claim that this is a type-II mode. The same approach 
is applied by Malik et al (1999) to the swept wing experiments of Reibert et al (1996). Malik et al 
(1999) again apply a local, temporal stability of the stationary crossflow vortices that are 
established by the primary instability and find that better transition correlation results can be 
obtained by following the growth of the secondary instability in an N-factor calculation than 
simply basing a prediction on the location at which the secondary instability destabilizes. A 
method based on the primary instability alone cannot adequately predict transition location. 

An alternative to the approach used by Malik et al (1994, 1996, 1999) is presented by Koch et al 
(2000) who find the nonlinear equilibrium solution of the primary flow. Koch et al use the 
nonlinear equilibrium solution as a receptivity-independent basic state for a Floquet analysis of 
secondary instabilities of the saturated vortices. Yet another approach is by Janke & Balakumar 
(2000) who use a NPSE for the base flow and a Floquet analysis for the secondary instabilities. 
Both Koch et al (2000) and Janke & Balakumar (2000) are in general agreement with the various 
computations of Malik and coworkers. 

A DNS approach to the problem of the stationary-vortex saturation and the ensuing secondary 
instability was pursued by Högberg & Henningson (1998). These authors impose an artificial 
random disturbance at a point where the stationary vortices are saturated. These disturbances 
enhance both the low- and high-frequency disturbances downstream, and each frequency band 
has a distinct spatial location, with the high-frequency disturbance located in the upper part of the 
boundary layer and the low-frequency disturbance located in the lower part. Spectral analysis of 
the resulting disturbance field shows that the most-amplified high frequency is somewhat more 
than an order of magnitude higher frequency than the most-amplified traveling primary 
disturbance. Another high-frequency peak at approximately twice this frequency is also evident in 
the spectra. This peak likely corresponds to a type-II mode, although this feature is not described 
by the authors. 
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Another very highly resolved DNS study of nonlinear interactions of primary crossflow modes, 
their secondary instabilities, and eventual breakdown to turbulence is by Wassermann & Kloker 
(2002). Wassermann & Kloker emphasize disturbance wave packets that may be more realistic 
than single-mode disturbances. One of the most important findings obtained from the wave-
packet approach is that unevenly spaced primary vortices of differing strengths can interact in 
such a way to bring about an earlier onset of secondary instabilities and breakdown than would be 
found from a single-mode disturbance. Also, Wassermann & Kloker find that when the forcing 
that initiates the high-frequency secondary instability in their simulation is removed, the 
secondary-instability disturbances are convected downstream, out of the computational domain. 
This indicates that the secondary instability is convective and that the explosiveness of the 
secondary instability’s growth is not associated with an absolute instability. The advantage of 
Wasserman & Kloker’s DNS solution is its ability to reveal the rather intimate details of the 
breakdown process. As such, the work is one of the foundation contributions. 

At this time, the various approaches to the secondary instability problem, experimental, nonlinear 
PSE, and DNS, have achieved rather remarkable agreement in terms of identifying the basic 
mechanisms of the secondary instability, unstable frequencies, mode shapes, and growth rates.  A 
comparison of three of the most recent efforts is shown in Figure 6. This comparison shows 
agreement on the location of the breakdown and that it is associated with an inflection point in the 
spanwise direction (an extremum in ∂U/∂z). 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.   Mode-I velocity fluctuation contours.  (a) NPSE (Figure 7 from Malik et al 
1999), (b) DNS (Figure 20b from Wassermann & Kloker 2002), and (c) Experiment 

(Figure 11 from White & Saric 2005). 
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1.5 Summary  
The DNS and NPSE with curvature for 3-D crossflow-dominated flows have shown very 
encouraging results in validating against the available carefully documented experimental 
databases, but more work is still needed to simulate physical initial conditions including the 
freestream and leading-edge surface roughness. The flight experiments of Carpenter et al (2009) 
are beginning to provide receptivity data for roughness in flight to provide these much needed 
upstream conditions for the calculations. 

2.0 Attachment Line 
The attachment-line boundary layer (see Figure 7) can undergo an instability, or be subject to 
contamination by wing-root turbulence; these phenomena are associated with, in general, swept 
wings with a large leading-edge radius (Pfenninger 1965, Cumpsty and Head 1967, Gaster 1967, 
Pfenninger and Bacon 1969, Poll 1979, Hall et al. 1984, Reed & Saric 1989).   

Control in this case is achieved by limiting the value of the attachment-line momentum-thickness 
Reynolds number.  The initial flow condition at the root of the wing determines the critical 
attachment-line momentum-thickness Reynolds.  Many experiments have been done to find 
critical Reynolds number values for both attachment-line stability and leading-edge 
contamination. 

If the wing root is contaminated with turbulence from the fuselage or some other structure 
(pylons, for instance), the disturbances feeding into the boundary layer are relatively large and 
there exists an attachment-line momentum-thickness Reynolds below which the turbulent flow 
disturbances are damped and the flow becomes laminar.  To avoid leading-edge contamination, 
that is, disturbances propagating along the attachment line and feeding into and tripping the 
boundary layer, it is necessary to keep the attachment-line Reynolds number ReθAL below 100 
(Pfenninger 1965).  

( )[ ] 1001/sintaneR404.0Re 2/1 ≤+ΛΛ′= erALθ  

where Re’ is the dimensional unit Reynolds number based on freestream conditions, r is the 
dimensional normal-to-the-LE radius, Λ is the leading-edge sweep angle, and e is the ellipticity of 
the LE (e = 0 is conservative).  Thus a finite radius is possible. 

On the other hand, if the flow is laminar at the root or if turbulent disturbances have been 
removed by suction near the wing root or by some device such as a Gaster bump, then above a 
certain value of Reθ small disturbances seem to grow and result in a turbulent attachment line.  
This is called attachment-line stability, and the current suggested design criterion is  

( ) 1/2
Re 0.404 Re tan sin / 1 245AL r eθ ′= Λ Λ + ≤⎡ ⎤⎣ ⎦  

For attachment-line stability, Gaster (1967) performed experiments an a Handley Page laminar 
flow wing at 43o sweep which indicated that the critical Reynolds number for a laminar boundary 
layer (small disturbances) was greater than 170 (the highest Reθ used in the experiment).  Gaster 
also designed a bump which bears his name, the purpose of which is to remove the turbulent 
boundary layer originating at the wing root to help stabilize the flow.  Cumpsty and Head (1969) 
conducted experiments on a swept wing model showing that laminar flow is stable up to 
ReθAL=245.  Pfenninger and Bacon (1969) performed experiments on a 45o swept airfoil and 
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found the critical ReθAL for laminar flow is 240.  The experiments by Poll (1979) indicated that 
laminar flow was stable to ReθAL =230.  A good general value for the onset of transition for an 
uncontaminated root flow is ReθAL =240.  

Under ordinary circumstances, in practice for transport flight, one is dealing with leading-edge 
contamination and one selects the sweep angle and normal-to-the-LE radius so that the 
attachment-line Reynolds number is well below 100.  Otherwise, one has tripped the boundary-
layer from the leading edge.  Here is an opportunity to use a Gaster bump or simple passive 
suction patch near the wing root.  Now one is dealing with attachment-line stability, with the 
attachment-line Reynolds number criterion now being relaxed to needing to be maintained below 
245.  In this case one has the flexibility to increase the nose radius by a factor of 6.  

 
 
 

Figure 7.  Flow around 
swept wing attachment line 

 
 
 
 
 

 

Several investigators have used DNS and linear and nonlinear analysis techniques to look at the 
nature of the instabilities and to confirm previous experimental results.  Hall, Malik, and Poll 
(1984) used nonparallel linear stability theory on a swept Hiemenz (stagnation point) flow and 
predicted a critical ReθAL =245.  Spalart (1989) used a DNS method to confirm this result.  Hall 
and Malik (1986) attempted to bridge the gap between the turbulent and laminar originating flow 
by using weakly nonlinear theory and DNS, and found that subcritical disturbance growth 
corresponds to branch II of the neutral curve.  Eigenvalue analysis of Lin and Malik (1996, 1997), 
and DNS work by Joslin (1995, 1996) has confirmed previous results. 

Although empirical, the use of the attachment-line momentum-thickness Reynolds number has 
been demonstrated to be valid in a wide range of flows from low-speed to supersonic. Analytical, 
computational, and experimental attempts to characterize attachment line transition have 
historically reduced to this criterion.  At this point this seems to be the best available engineering 
strategy for predicting transition on the attachment line. 

 

SUPERSONIC FLOWS 

Considerable uncertainty exists in both the prediction and control of transition in supersonic 
flows due to the dearth of reliable experiments.  The paper by Mack (1984) is the most complete 
description of compressible stability available anywhere. The linear stability analysis of high-
speed boundary layers uncovers three major differences between it and the subsonic analysis: the 
presence of a generalized inflection-point, the dominance of 3-D viscous disturbances, and 
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multiple acoustic modes (Mack Modes). Stability analyses of high-speed boundary layers have 
largely been limited to simple geometries such as flat plates and axisymmetric cones.  

3.0 STABILITY ANALYSES 

3.1 Generalized Inflection-Point Criterion 
The boundary layer on an adiabatic flat plate in a compressible flow always features D(ρDU) = 0 
somewhere in the flow.  Thus, even zero-pressure-gradient flows are subject to inviscid 
instabilities that grow with increasing Mach number.  As ys moves away from the wall with 
increasing Mach number, the range of unstable frequencies is enlarged at high Reynolds numbers.  
This effect occurs up to a Mach number of approximately 5.  In contrast to M=0, when viscosity 
is considered at M>1, it may be stabilizing relative to the dynamic instability. 

3.2  3-D Viscous Disturbances 
In the supersonic case (1 < Me < 10) under perfect gas assumptions, Mack completed extensive 
linear stability computations of 3-D stability maps on a flat plate and found many important 
results (see Mack 1984 for the details and comparisons with experiment).  The earliest results 
showed that above a Mach number of 1, 3-D waves corresponding to the first viscous mode have 
a larger amplification factor than the corresponding 2-D disturbance. In 1970’s, Mack validated 
Kendall’s experiments (in the JPL 20” Variable Mach Number Supersonic Tunnel) showing 
dominance of 3-D viscous modes up to Mach 4 on a flat plate. The dominance of 3-D viscous 
disturbances refers to the fact that at supersonic speeds, the 2-D viscous disturbances called 
Tollmien–Schlichting (TS) waves at lower speeds are not the most unstable viscous disturbances. 
Instead, oblique disturbances of the same general family are most amplified. These are called 
first-mode disturbances.  As the Mach number is increased above 1, the most unstable wave angle 
quickly increases to 45˚ at Me = 1.3, 55˚ at Me = 1.6, and 60˚ at Me = 2.2.  Thus, the assumption 
of 2-D viscous disturbances cannot be made in supersonic flows. 

3.3  Multiple Acoustic Modes:  Mack Modes 
One of the most significant developments in compressible theory comes from Mack, who 
discovered a new family of solutions to the compressible equations.  They can be explained by 
considering the inviscid stability equation in the form 

∂2ψ/∂y2 + (1-M2) ∂2ψ/∂x2 + f(M, ψ, ∂ψ/∂y) = 0 

where 

ψ = v/(αU + βW - ω) 

M = (αU + βW - ω) Me / [(α2 + β2) T] 1/2 

M(y) is the relative Mach number between the local basic-state velocity and the propagation 
speed of a neutral wave.  Me is the edge Mach number.  Here, we recall that and take advantage 
of the fact that ∂2ψ/∂x2 was the source of -(α2 + β2)ψ in the disturbance equation.  Obviously, 
when M2 < 1, this equation is elliptic and the eigenvalue is unique as it is in the case of 
incompressible inviscid theory.  When M2 > 1, this equation is hyperbolic and an infinite discrete 
set of eigenvalues can satisfy the boundary conditions.  M2 = 1 at y = ya in the boundary layer 
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and ya is called a turning point.  The solution of this equation can be found by using WKB 
methods.  For y<ya, the solutions are oscillatory and for y>ya they are exponential. 

Physically, the disturbances propagate at a speed that is subsonic relative to the edge velocity, but 
supersonic relative to the region near the wall (y<ya).  Thus, for an adiabatic flat plate with Me = 
3.8, disturbances with phase speeds cr > 0.5 are supersonic with respect to the wall region 
(Morkovin 1991).  At the same phase speed cr, a sequence of wavenumbers satisfy the 
differential equation and boundary conditions.  These extra solutions are higher modes and are 
most unstable as 2-D waves, because it is then that the relative supersonic region is of maximum 
extent.  They have shorter wavelengths than the usual T-S instability waves (first modes) since 
the wavenumber sequence is approximately 

2αn/π = 1,3,5,7, …. 

They are not T-S waves by character or behavior and it is fitting that they be called Mack modes.  
They represent inviscid acoustic waves that reflect inviscidly between the solid wall and the 
relative sonic line in the boundary layer.  See also Mack (1987). 

The lowest-frequency Mack mode, the so-called second mode, is found to be the dominant 
instability for Mach number greater than about 4; it is more unstable than either the 3-D first 
mode or any of the other higher modes.  If  M2 < 1 everywhere within the boundary layer, then 
the first mode may be present. If M2 > 1 somewhere within the boundary layer, the flow is 
unstable to “Mack” modes.  The second mode is a “subsonic” mode in that its structure 
exponentially decays with height in the inviscid region of the shock layer.  The second mode is 
found in the experiments of Kendall (1975), Demetriades (1977), and Stetson et al.(1984).  
Beyond these experiments, there has not been a systematic effort to validate Mack’s predictions 
or to investigate the conditions (roughness, bluntness, angle of attack, wall cooling, chemistry 
effects etc.) at which the first mode, second mode, transient growth or crossflow dominate 
transition. 

Mack (1984) provides additional insight to second-mode behavior, discussing the effect of the 
thermal boundary layer. Mack observes that whereas the first mode is stabilized by cooling in air, 
the second mode is actually destabilized.  The second mode is also found to be less stable with 
decreasing viscosity in air.  This idea is related to the argument about cooling in that the viscosity 
of air increases with temperature.  As temperature decreases, the local speed of sound decreases, 
which means the local Mach number M2 increases and the second mode is more unstable. 

Additionally Mack (1984) reasons that the behavior of the second mode is influenced by the 
height of the boundary layer, which is affected by both wall cooling and viscosity. There is a 
strong tuning with the boundary-layer thickness, so that the frequency of the most amplified 
disturbance may be predicted from this flow parameter.  In particular, the fluctuation wavelength 
is approximately twice the boundary-layer thickness.  This implies that if the boundary-layer 
thickness is changed, for example by cooling, a corresponding and predictable change in 
frequency should be observed. A thinning of the boundary layer decreases the wavelength and 
thus increases the frequency, with the converse being true.  

It is apparent from the discussion of Mack (1987) that the size of the region of relative supersonic 
flow is an important factor in determining second-mode behavior. That is, the thickness of the 
region between the wall and the relative sonic line in which M2 > 1 and in which the second mode 
is unstable, determines the characteristics of the instability.  The thermal boundary-layer profile 
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affects both the viscosity and the local sonic speed (and thus M2). Accordingly, particular 
attention should be given to the thermal boundary layer as a part of a second-mode investigation. 

3.4 Comparisons  

As Schneider (2001) points out, accurate depiction of the growth of a second-mode instability 
wave over a circular cone at zero-angle of attack remains a challenge, both computationally and 
experimentally. The series of experiments performed by Stetson et al. (1984), who consider the 
growth of instabilities on right-circular cones (both sharp and blunted) at zero-angle-of- attack at 
Mach 8, has provided the basis for many computational efforts.  Numerical comparisons to the 
observed growth of second-mode instabilities over the spherically blunted-cone are reported by 
Malik et al. (1990), Esfahanian (1991), Kufner et al. (1993), and Rosenbloom et al. (1999). 
Agreement with the experimentally observed growth rates can be described as qualitative. 

The Stetson et al. (1984) geometry is a 7º half-angle right-circular cone, with a blunted nose of 
radius 3.81 mm. The total length of the model is just over 1 m (s = 267). The free-stream flow is 
Mach 8, with zero-incidence with respect to the cone’s axis. The Reynolds number (based upon 
free-stream conditions and the nose radius) is 3.3×105. The focus of the experiment is the second-
mode instability, which is thought to be dominant for high-speed flows over smooth, convex, axi-
symmetric geometries in two-dimensional flow. 

Schneider (2001) summarizes the Stetson experimental conditions very efficiently. Paraphrasing 
Schneider, the total pressure is 4.00 MPa; the total temperature is 750 K. On the cone, surface 
measurements are taken for pressure and temperature. Basic-state profiles are measured using 
total-temperature and pitot-pressure probes. Basic-state comparisons between experimentally 
determined profiles and computed profiles are discussed below. For the Stetson experiment, 
disturbances are measured using a series of four hot-wire anemometers. Starting at 0.254 m (s = 
66:7), disturbance spectra are measured through 0.922 m (s = 242). The measured total-
temperature spectra are shown in Figure 11; here ω = 1 corresponds to f* = 49.5 kHz. The second-
mode disturbances correspond to the spectral peaks that appear in the range 2.5 < ω < 3. 
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Figure 11: Stetson experiment: measured disturbance spectra of total temperature. 

From Lyttle et al. (2004) 

From Figure 11, there follow some observations about the experiment. First, Schneider (2001) 
notes that the experimental (free-stream) environment is not quiet, thus Figure 11 shows the 
growth of broadband, uncontrolled disturbances that result from the free-stream noise. Second, 
one notices the presence of a harmonic of the second-mode disturbance, starting at s = 215. This 
implies that non-linear interactions may be important downstream of s = 215. Summing up, the 
validity of comparing these experimental results with linear stability theory is limited by the free-
stream disturbance environment and the possible presence of non-linear interactions. 

Following Malik et al. (1990), many numerical investigators have chosen s = 175 as the place to 
make a comparison with the second-mode growth-rates reported by Stetson. As seen in Figure 12, 
the numerically determined growth rates (including Lyttle et al. 2004) consistently peak roughly 
60% higher than the peak growth-rate reported by Stetson. There have been a variety of theories 
to try to explain this discrepancy. Schneider (2001) points out that Stetson postulates that non-
linearities are present at station 175, visible in Figure 7b in Stetson et al. (1984). It has been 
pointed-out that the wall temperature at s = 175 is not adiabatic, whereas the numerical (basic-
state) models assume an adiabatic wall. Mack (1987) points out that the origin of the disturbances 
(receptivity) is not addressed by linear-stability theory - nor by the experiment. Furthermore, 
Mack (1987) points out that the experimentally determined growth rates are found using the y-
locations that have the peak wide-band response - not with regard to the location of the peak of an 
individual frequency component. New experimental initiatives, led by Schneider et al. (2002) and 
Maslov (2001), address these issues. 
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Figure 12: Second-mode growth rates as functions of frequency at s=175. From Lyttle 

et al. (2004) 

 

Using a finite-volume code developed in-house, Lyttle et al. (2004) solve the Navier-Stokes 
equations for these conditions and use the solutions to perform linear-stability analyses to 
determine the growth of second-mode disturbances. The traditional approach for numerically 
investigating the Stetson et al. (1984) case is to model the cone-wall as being adiabatic. This is 
the standard boundary-condition used by numerical investigators, and was the intent of the 
Stetson experiment. As Schneider (2001) points out, this assumption is not supported by the 
experimental evidence. The computed adiabatic wall temperature distribution is higher than the 
experimentally measured temperature distributions. Schneider further observes that, as 
consecutive experimental runs are made, the measured temperature distribution rises from run to 
run, until an equilibrium temperature distribution is reached. Schneider hypothesizes that the heat 
capacity of the model prevents the wall temperature from reaching the adiabatic value.  Lyttle et 
al. (2004) incorporate an option to use an experimentally determined wall-temperature 
distribution for the basic state. 

Following the suggestion of Schneider (2001), comparisons are made of integrated growth-rates 
among the computations and the experiments. This may be a more appropriate comparison 
because the experiments measure the disturbance amplitudes, then calculate the growth-rates 
based on the change in disturbance amplitudes. The integrated growth-rates, N-factors, depend on 
the two integration-endpoints s0 and s1, and are calculated as follows. 
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To place the current results in the context of the Stetson experiment, the adiabatic-wall, cooled-
wall, and Stetson N-factors are compared, using s = 195 as the reference location. The current 
results’ agreement with the experimental results is best in the range of frequencies 2.4 < ω < 2.8. 
Examining the experimentally determined amplitudes from Figure 11, this frequency range 
corresponds with those frequencies that are most-amplified in the experiment. 
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Figure 13: Comparison of N-factors, s0=195, Stetson case (Lyttle et al. 2004). 

The N-factor curves for a series of individual disturbance waves are considered, using s = 195 as 
the reference location. It is surmised that if a discernible linear-growth region exists, the extent of 
such a region can be identified by choosing s0 = 195. For example, the results for ω = 2.62 are 
shown in Figure 14, demonstrating the existence of a linear-growth region. The traditional under-
prediction of growth-rates at s = 175 might also be explained by examining Figure 14. 
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Figure 14: N-factor comparison, ω=2.62, Stetson case (Lyttle et al. 2004). 

Form these results, Lyttle et al. (2004) propose that linear-stability theory describes the growth of 
second-mode disturbances for 2.4 < ω < 2.8, and for the region 195 < s < 215. The frequencies 
in this range correspond to the most-amplified second-mode frequencies. Upstream of s = 195, it 
is postulated that the amplified second-mode waves have not yet fully distinguished themselves 
from the noise. Indeed, the experimental N-factor curves suggest that the experimental-numerical 
disjoint at s = 175 may be attributed to signal-noise problems, rather than to non-linearity. For 
locations downstream of s = 215, perhaps non-linear interactions are important – behavior that 
cannot be captured using LST. Also, the agreement between the experiment and the current 
predictions appears better for the computations that use an experimentally determined wall-
temperature distribution. 

Next, Lyttle et al. (2004) consider the experiments conducted in the ITAM hypersonic wind 
tunnel T-326 by Shiplyuk, Maslov and colleagues, at a freestream Mach number of 5.95 on a 7° 
half-angle blunt-nosed cone.   For the experiments, artificial waves are generated by a high-
frequency glow discharge.  For both the simulation and the experiment, 275 kHz disturbances are 
highly amplified.  Again they find good agreement between LST and experiments in the phase 
speed and disturbance profiles (Figure 15), as well as for disturbance growth for the second mode 
(Figure 16).   
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Figure 15.  Comparison between ITAM experiments and LST for disturbance mass flow 
profile and phase within the boundary layer for the second mode.  From Lyttle et al. 

(2004) 

 
 

 

 

 

 

 

 

Figure 16.  Comparison between ITAM experiments and LST for N-factors for the 
second mode.  From Lyttle et al. (2004) 

3.5 Summary 
With little experimental validation data available for supersonic flows, validation of the physics 
predicted for stability and transition is difficult.  It is clear that further theoretical, computational 
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and experimental work will have to be a joint effort in order to further identify and validate the 
appropriate models and the fundamental causes of transition. Careful, well documented validation 
experiments in quiet facilities and at flight conditions are very much needed – conventional 
facilities may even suggest trends opposite to those in flight and available flight data are 
uncertain in operating conditions. 
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